The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
May. 21, 2002

Filed:

Apr. 09, 1999
Applicant:
Inventors:

Brian W. Anthony, Cambridge, MA (US);

Petros A. Kotidis, Framingham, MA (US);

Daniel E. Klimek, Lexington, MA (US);

Agostino Abbate, Boxborough, MA (US);

Assignee:

Textron Systems Corporation, Wilmington, DE (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G06G 7/48 ;
U.S. Cl.
CPC ...
G06G 7/48 ;
Abstract

In an apparatus and method for remote ultrasonic determination of thin material properties using signal correlation, a method and apparatus are provided by which an arbitrarily-oriented anisotropic thin material may be interrogated for characterizing an unknown material property value thereof. The unknown material property may comprise for example temperature, pressure, elastic constants, density, hardness, composition, crystal orientation, grain size, and residual stress, or any material property that is variable with respect to known physical parameters of the material, for example known material elastic constants and/or density. In a first embodiment, theoretical signals are generated, for example a theoretical signal matrix, to characterize a material property value of a thin anisotropic material. A model of the thin material is generated comprising the behavior of the known material physical properties as functions of the unknown material property value to be characterized. For a plurality of known material thicknesses and known material property values, a transduction mechanism is simulated at a source location for generating a simulated elastic stress wave operating on the model at a plurality of source locations. The simulated intensities of signals generated by the simulated elastic stress waves are computed at a sense location to provide a representative composite signal. Theoretical signals are determined from the composite signal at each thickness and at each material property value. In a second aspect, the present invention is directed to a method for empirical characterization of a transduction event in a thin material using iterative temporal decomposition of an initial estimate of the transduction event converging on a measured signal.


Find Patent Forward Citations

Loading…