The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Apr. 30, 2002

Filed:

Dec. 09, 1999
Applicant:
Inventors:

Virendra S Shah, Edison, NJ (US);

Atul Kumar Srivastava, Eatontown, NJ (US);

James William Sulhoff, Ocean, NJ (US);

Yan Sun, Middletown, NJ (US);

Liyan Zhang, Middletown, NJ (US);

Assignee:

Lucent Technologies Inc., Murray Hill, NJ (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G16F 1/750 ;
U.S. Cl.
CPC ...
G16F 1/750 ;
Abstract

A method of modeling erbium doped fiber (“EDF”) for use in erbium doped fiber amplifiers (“EDFA”). The EDF has a length and a fractional population density of erbium ions in an excited state. Since the EDF supports N channels, the power propagation along the EDF is characterized by N+1 differential equations as a function of the direction of propagation, z, of the channels along the length l of the EDF and the time t. By applying an average inversion model to a spatially averaged inversion level of the erbium ions in the fiber, the N+1 partial differential equations are reduced to a single ordinary differential equation. This allows an analytical solution at the boundary and initial conditions of the fiber so that an expression for the power of the signal propagating along the fiber can be obtained. With this expression, the single equation can be solved analytically for the inversion level at any point along the EDF.


Find Patent Forward Citations

Loading…