The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 30, 2002
Filed:
Aug. 06, 1999
Todd G. Wetzel, Niskayuna, NY (US);
Sandra F. Feldman, Niskayuna, NY (US);
Lockheed Martin Corporation, Bethesda, MD (US);
Abstract
Disclosed are flow separation detectors and, more particularly feedback sensor arrangements adapted to provide for the measurement of surface aerodynamic flow phenomena, and especially with regard to aerodynamic flow separation which is encountered over a surface. In order to obviate or ameliorate the electrical energy requirements in the provision of feedback sensor arrangements, particularly such which are employed for a closed-loop control of aerodynamic flow separation; for instance, that on the wing of an aircraft wherein there can be encountered a breakdown of a boundary-layer flow which may adversely affect the performance of the aircraft, provided is a novel system of flow separation sensors which are based on fiber optics and which may be employed for separation feedback control. In particular, the sensors which are based on fiber optics may employ an optical tuft arrangement based on the thermal/fluidic principles of the electrical thermal tuft, but with the employing of fiber optics signal and energy transmission instead of electronics. To that effect, the light transmitted through the fiber optics is adapted to be converted into heat enabling a packet of heated fluid to be convected in the direction of a predominant aerodynamic flow, and to impact or contact one of the temperature sensors which are based on fiber optics at a small following time interval, so as to provide the required information concerning aerodynamic flow separation.