The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 09, 2002
Filed:
Apr. 12, 1999
Monica C. Fontenot, Marietta, GA (US);
Terry Pearce Ford, Woodstock, GA (US);
James Jay Tanner, Winnenconne, WI (US);
Jonathan Robert Owen, Eagan, MN (US);
John Joseph Lassig, Lawrenceville, GA (US);
Barbara Jean Burns, Appleton, WI (US);
Alan Grady Shuman, Woodstock, GA (US);
Victor Michael Gentile, Appleton, WI (US);
Kimberly-Clark Worldwide, Inc., Neenah, WI (US);
Abstract
The present invention pertains to an airlaid composite which is made of pulp fibers, at least about 2% by weight bicomponent fiber, and moisture. This airlaid composite is unique in that a uniformly even composite is made which upon calendering, becomes a thin structure which maintains significant absorbency when saturated. The bicomponent fibers of the present invention include a first polymer component and a second polymer component, and the first polymer component melts at a temperature lower than the melting temperature of the second polymer component. Mixing of the pulp fibers with the bicomponent fibers is done in such a way that the fibers are evenly dispersed in the airlaid composite. This airlaid composite is then heated such that at least a portion of the first polymer component of the bicomponent fiber is melted, which bond the bicomponent fibers to many of the pulp and bicomponent fibers when cooled. Moisture is added on to the composite to further facilitate bonding when the composite is subsequently subjected to calendering. Optionally, a sheet layer may be attached to the airlaid composite to form a multi-layered absorbent structure. Such composites and absorbent structures are characterized by a drape stiffness of at least about 5 cm, an absorbency of at least about 12 g/g, and a dry tensile strength of at least about 1300.