The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Mar. 05, 2002

Filed:

Sep. 01, 1999
Applicant:
Inventors:

Sudhakar Muddu, Santa Clara, CA (US);

Egino Sarto, Palo Alto, CA (US);

Assignee:
Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G06F 1/750 ; G06F 1/900 ;
U.S. Cl.
CPC ...
G06F 1/750 ; G06F 1/900 ;
Abstract

Determining a switching factor is useful for optimizing integrated circuit (IC) design. One aspect of the invention is a method for determining the switching factor. The method includes applying a voltage to each interconnect of a pair of interconnects, each voltage having a waveform and a slew time. The method includes dividing the voltage waveform into time regions, and analyzing a behavior of a capacitor in each of the time regions by determining the value of an effective capacitance as seen from one of the interconnects. The method includes determining a total effective capacitance by time averaging the effective capacitance values and determining the switching factor from the total effective capacitance. The switching factor is a function of a ratio between the slew times, wherein a time-averaged effective value of the switching factor corresponds total effective capacitance. The time-averaged effective value of the switching factor is accounted for in optimizing the design of IC comments interconnections. The switching factor has a value that varies between zero (0) and a switching factor maximum value based on logic state switching conditions of the voltages including their respective waveforms, respective slew times, and relative start times and directions of switching. Another aspect of the invention is a method of optimizing IC components interconnections design with switching factor analysis. This method includes determining the switching factor for a pair of coupled interconnects under worst case conditions, the switching factor being a function of the ratio between slew rates of signals at the coupled interconnects.


Find Patent Forward Citations

Loading…