The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 12, 2002
Filed:
Dec. 30, 1998
Ghislain Imbert De Tremiolles, Paris, FR;
Pascal Tannhof, Fontainebleav, FR;
International Business Machines Corporation, Armonk, NY (US);
Abstract
The improved neural network of the present invention results from the combination of a dedicated logic block with a conventional neural network based upon a mapping of the input space usually employed to classify an input data by computing the distance between said input data and prototypes memorized therein. The improved neural network is able to classify an input data, for instance, represented by a vector A even when some of its components are noisy or unknown during either the learning or the recognition phase. To that end, influence fields of various and different shapes are created for each neuron of the conventional neural network. The logic block transforms at least some of the n components (A1, . . . , An) of the input vector A into the m components (V1, . . . , Vm) of a network input vector V according to a linear or non-linear transform function F. In turn, vector V is applied as the input data to said conventional neural network. The transform function F is such that certain components of vector V are not modified, e.g. Vk=Aj, while other components are transformed as mentioned above, e.g. Vi=Fi(A1, . . . , An). In addition, one (or more) component of vector V can be used to compensate an offset that is present in the distance evaluation of vector V. Because, the logic block is placed in front of the said conventional neural network any modification thereof is avoided.