The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 29, 2002
Filed:
Sep. 03, 1999
Hui-Ling Lou, Murray Hill, NJ (US);
Rudiger L. Urbanke, Murray Hill, NJ (US);
Agere Systems Guardian Corp., Orlando, FL (US);
Abstract
A communication system decoder in which branch metrics are represented using linear distance. An illustrative embodiment for decoding a sequence of received symbols of a QPSK or QAM constellation includes a branch metric calculation unit, an add-compare-select unit, and a traceback unit. The branch metric unit computes branch metrics associated with transitions between states of a multi-stage trellis representation of a state machine. In accordance with the invention, each of the branch metrics correspond to a linear distance between a given one of the received symbols and its nearest codeword in a given stage of the trellis. The add-compare-select unit utilizes the branch metrics of a current stage, along with a previously-generated path metric, for comparison purposes in determining a survivor path and corresponding updated path metric for a current stage of the multi-stage trellis. The traceback unit utilizes the updated path metric to generate a corresponding decoded output. Advantageously, the add-compare-select unit of the decoder is configured such that it achieves a level of performance using the linear distance branch metrics which is equivalent to that achieved using squared distance branch metrics, while also substantially reducing the decoder complexity through the elimination of multiplication operations.