The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 22, 2002
Filed:
May. 10, 2000
James W. Leith, Seattle, WA (US);
Zilog, Ind., Campbell, CA (US);
Abstract
A sample and hold circuit uses an auto-zero feedback technique to cancel the DC level of the input signal and reference this signal to a new baseline. The circuit is based on an op-amp with two separate feedback loops. The first feedback loop is connected to the same op-amp input as the incoming signal and contains a capacitor to store charge from this signal during sample mode and set the output voltage during hold mode. The second feedback loop uses an auto-zero feedback technique and contains an integrator having a predetermined reference voltage, thereby allowing the DC level of the input signal to removed without the need for capacitors in the gain path of the circuit. This allows the sample and hold circuit to extract an embedded time varying signal from the input voltage. It can be configured for a high gain, high pass function, without the need for large electrolytic capacitors in the gain path, removing the problems associated with such capacitors. An exemplary embodiment of a three stage circuit for extracting an embedded signal lying in a frequency range, but having an amplitude much smaller than the DC component of the analog signal within which it is embedded. An initial low gain section acts as a buffer before the sample and hold section. Following the sample and hold section, the circuit employs a stage with a high gain high pass function also using auto-zero feedback. This again eliminates the large electrolytic capacitors usually placed the gain path that can not be implemented as part of a single integrated circuit. Besides eliminating the need for off-chip capacitors in the gain path, by using auto-zero feedback all sample and hold errors are referenced to the output of the sample and hold stage and are not amplified by the total system in a multi-stage configuration as the offset voltages of the amplifiers are not amplified.