The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jan. 15, 2002

Filed:

May. 07, 2001
Applicant:
Inventors:

Harry R. Allcock, State College, PA (US);

Thomas J. Hartle, State College, PA (US);

Michael B. McIntosh, State College, PA (US);

Nicolas J. Sunderland, State College, PA (US);

Robbyn Prange, State College, PA (US);

Jonathan P. Taylor, Lemont, PA (US);

Assignee:

The Penn State Research Foundation, University Park, PA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
C07F 7/08 ;
U.S. Cl.
CPC ...
C07F 7/08 ;
Abstract

Methods have been developed to produce phosphazene modified organic or siloxane polymers. The method includes (a) providing an organic or siloxane polymer comprising phosphine units, and (b) reacting the organic or siloxane polymer with a phosphazene azide compound under conditions wherein the phosphazene azide compound is bound to the phosphine unites in the polymer, thereby producing the phosphazene-modified organic or siloxane polymer. The organic polymer of step (a) is produced by reacting a first monomer comprising phosphine with a second monomer via free radical or anionic polymerization techniques to produce the organic polymer comprising phosphine units. The first and second monomers can be identical. A wide variety of organic polymer backbones can be modified using these techniques. The second monomer, for example, can be selected from monomers forming polyolefins, polydienes, polyacrylics, polyethylenes, polyvinyl chlorides, polyisoprenes, polystyrenes, polycaprolactam, poly(methyl)(meth)acrylates, and polypropylenes. Alternatively, the siloxane polymer of step (a) is produced by reacting a monomer comprising phosphine with a hydrosilicone polymer via hydrosilylation polymerization techniques to produce the siloxane polymer comprising phosphine units. These phosphazene modified organic and siloxane polymers are useful in a variety of applications, particularly as a fire retardant material.


Find Patent Forward Citations

Loading…