The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 15, 2002
Filed:
Oct. 23, 1998
Ken-ichi Yanai, Kawasaki, JP;
Tsutomu Tanaka, Kawasaki, JP;
Koji Ohgata, Kawasaki, JP;
Yutaka Takizawa, Kawasaki, JP;
Ken-ichi Oki, Kawasaki, JP;
Takuya Hirano, Kawasaki, JP;
Fujitsu Limited, Kawasaki, JP;
Abstract
To form a contact layer on source and drain electrodes of a stagger-type TFT, a conductive material is selectively sticked to the surface of the source and drain electrodes and a contact layer is selectively deposited by using the conductive material as growth species to form an active semiconductor layer on the contact layer. For an inverted-stagger-type TFT, a conductive material is selectively deposited on the surface of a contact layer to use the selectively deposited conductive material as source and drain electrodes so that patterning is unnecessary. To selectively deposit a contact layer of a TFT by alternately repeating etching and deposition, the temperature for the etching is set to 200° C. or lower. A contaminated layer on the surface of a semiconductor film serving as an active semiconductor layer and contact layer of a TFT is removed by plasma at the temperature of 200° C. or lower. For a stagger-type thin-film transistor, the hydrogen or halogen content of an insulating film serving as the substrate of source and drain electrodes is increased. For an inverted-stagger thin-film transistor, the hydrogen or halogen content of an insulating film serving as a channel protective film is increased. Thus, the etching rate of the surfaces of these insulating films by plasma increases.