The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 18, 2001
Filed:
Oct. 19, 1998
Dennis C. Braunreiter, San Diego, CA (US);
Harry A. Schmitt, Tucson, AZ (US);
Hai-Wen Chen, Tucson, AZ (US);
Raytheon Company, Lexington, MA (US);
Abstract
An image processing system and method. In accordance with the inventive method, adapted for use in an illustrative image processing application, a first composite input signal is provided based on plurality of data values output from a sensor in response to a scene including a target and clutter. The composite signal is processed to provide a plurality of tap weights. The tap weights are generated by the matrix of data values which is first filtered by a wavelet transform to provide a set of coefficients. The coefficients are sparsened to provide a sparse matrix. The sparse matrix is then inverse wavelet transformed to provide the tap weights. Finally, the tap weights are applied to the composite signal to yield a clutter reduced output signal. In the illustrative implementation, the matrix is a covariance matrix. However, a method for implementing the teachings of the invention in the data domain is also disclosed. In the illustrative implementation, the sparsed matrix is inverted and a set of steering vectors is applied to create the tap weights. The invention affords an enhanced Signal-to-Interference+Noise Ratio (SINR) because (i) wavelets provide better bases for nonstationary processes and therefore offer improved sample support performance and (ii) coefficient thresholding in wavelet domain removes noisy data that is difficult to estimate.