The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 14, 2001
Filed:
Sep. 27, 1999
Vijayakumar R. Dhuler, Raleigh, NC (US);
Edward A. Hill, Chapel Hill, NC (US);
Ramaswamy Mahadevan, Chapel Hill, NC (US);
Mark David Walters, Durham, NC (US);
Robert L. Wood, Cary, NC (US);
JDS Uniphase, Inc., , CA;
Abstract
A MEMS (Micro Electro Mechanical System) variable optical attenuator is provided that is capable of optical attenuation over a full range of optical power. The MEMS variable optical attenuator comprises a microelectronic substrate, a MEMS actuator and an optical shutter. The MEMS variable optical attenuator may also comprise a clamping element capable of locking the optical shutter at a desired attenuation position. The variable light attenuator is capable of attenuating optical beams that have their optical axis running parallel and perpendicular to the substrate. Additionally, the MEMS actuator of the present invention may comprise an array of MEMS actuators capable of supplying the optical shutter with greater displacement distances and, thus a fuller range of optical attenuation. In one embodiment of the invention, the MEMS actuator comprises a thermal arched beam actuator. Additionally, the variable optical attenuator of the present invention may be embodied in a thermal bimorph cantilever structure. This alternate embodiment includes a microelectronic substrate and a thermal bimorph cantilever structure having at least two materials of different thermal coefficient of expansion. The thermal bimorph is responsive to thermal activation and moves in the direction of the material having the lower thermal coefficient expansion. Upon activation, the thermal bimorph intercepts the path of the optical beam and provides for the desired level of optical attenuation. The invention also provides for a method of optical attenuation and a method for fabricating an optical attenuator in accordance with the described structures.