The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Aug. 14, 2001

Filed:

Jul. 29, 1996
Applicant:
Inventor:

John P. Barber, Kettering, OH (US);

Assignee:

IAP Research, Inc., Dayton, OH (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
C21D 1/04 ; B29B 1/308 ;
U.S. Cl.
CPC ...
C21D 1/04 ; B29B 1/308 ;
Abstract

Structure and a method for producing very dense bodies of material from particulate materials. A particulate material is placed within an electrically conductive container. A solenoid or coil encompasses the electrically conductive container, and a large magnitude of electrical current is caused to flow through the solenoid or coil. As the electrical current flows through the solenoid or coil, large magnitudes of magnetic pressures are created upon the electrically conductive container, and the electrically conductive container is compressed, and the transverse dimension thereof is reduced. Thus, the particulate material within the electrically conductive container is very firmly compacted, and a rigid body of material is provided. Any one of numerous types of particulate material may be employed. For example, a body of electrical superconductive material of any desire size and shape can be produced by this method by the use of superconducting particulate material. A method and system for selecting various parameters which enable the material to be “over-pressured” and densified to densities in excess of 90% of the material's maximum density is also illustrated in another embodiment of the invention. The various parameters include establishing a stand-off distance, a container wall density and thickness, a fill density and a compressibility value for the material. Once the various parameters are established and for a selected material, the material is magnetically compacted to over-pressure the material to a pressure level which exceeds the pressure applied by a wall of the container. This, in turn, enables the system and method to densify the material to densities in excess of 90% of its maximum density.


Find Patent Forward Citations

Loading…