The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 31, 2001
Filed:
Nov. 07, 1997
Seth Marder, Pasadena, CA (US);
Joseph Perry, Pasadena, CA (US);
California Institute of Technology, Pasadena, CA (US);
Abstract
Compositions capable of simultaneous two-photon absorption and higher order absorptivities are disclosed. Many of these compositions are compounds satisfying the formulae D-Π-D, A-Π-A, D-A-D and A-D-A, wherein D is an electron donor group, A is an electron acceptor group and Π comprises a bridge of &pgr;-conjugated bonds connecting the electron donor groups and electron acceptor groups. In A-D-A and D-A-D compounds, the &pgr; bridge is substituted with electron donor groups and electron acceptor groups, respectively. Also disclosed are methods that generate an electronically excited state of a compound, including those satisfying one of these formulae. The electronically excited state is achieved in a method that includes irradiating the compound with light. Then, the compound is converted to a multi-photon electronically excited state upon simultaneous absorption of at least two photons of light. The sum of the energies of all of the absorbed photons is greater than or equal to the transition energy from a ground state of the compound to the multi-photon excited state. The energy of each absorbed photon is less than the transition energy between the ground state and the lowest single-photon excited state of the compound is less than the transition energy between the multi-photon excited state and the ground state.