The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jul. 24, 2001

Filed:

Apr. 02, 2000
Applicant:
Inventors:

Chaim Amir, Brookline, MA (US);

Gin S. Yee, Sunnyvale, CA (US);

Assignee:

Sun Microsystems, Inc., Palo Alto, CA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H03K 3/037 ;
U.S. Cl.
CPC ...
H03K 3/037 ;
Abstract

A dynamic flip-flop circuit that operates in a pre-charge phase and an evaluation phase allows for implementation of multiple-input logic functions without sacrificing performance by using a single evaluation path to generate its output signals. In one embodiment, the dynamic flip-flop circuit includes input logic that receives a clock signal and one or more data input signals. The clock signal defines the pre-charge phase and the evaluation phase of the flip-flop circuit. The input logic has an output terminal connected to a first output buffer circuit, which in turn drives the flip-flop circuit's Q output signal. The output terminal of the input logic is combined with the clock signal in a logic gate having an output terminal connected to a second output buffer circuit, which in turn drives the flip-flop circuit's complementary output signal {overscore (Q)}. During the pre-charge phase, the input logic forces the Q output signal to a first logic state via the first output buffer, and the logic gate forces the {overscore (Q)} output signal to logic low via the second output buffer. During the evaluation phase, the input logic generates a logic signal in response to a predetermined logic function of its one or more input signals. The logic signal(s), in turn, drives the Q output signal via the first output buffer, and drives the {overscore (Q)} output signal to a complementary logic state via the logic gate and second output buffer.


Find Patent Forward Citations

Loading…