The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 03, 2001
Filed:
Nov. 25, 1998
Richard William Sproat, Berkeley Heights, NJ (US);
Jan Pieter VanSanten, Brooklyn, NY (US);
Lucent Technologies Inc., Murray Hill, NJ (US);
Abstract
A system and apparatus are disclosed for identifying polysemous terms and for measuring their degree of polysemy. A polysemy index provides a quantitative measure of how polysemous a word is. A list of words can be ranked by their polysemy indices, with the most polysemous words appearing at the top of the list. A polysemy evaluation process collects a set of terms near a target term. Inter-term distances of the set of terms occurring near the target term are computed and the multi-dimensional distance space is reduced to two dimensions. The two dimensional representation is converted into radial coordinates. Isotonic/antitonic regression techniques are used to compute the degree to which the distribution deviates from unimodality. The amount of deviation is the polysemy index. A corpus can be preprocessed using the polysemy indices to identify words having clearly separated senses, allowing an information retrieval system to return a separate list of documents for each sense of a word. Self-organizing sense disambiguation techniques can use the polysemy indixces to select canonical contexts for the various senses identified for a given word. Contexts are selected containing terms falling in radial bins near each peak. Such contexts can then be used for subsequent training of a classifier.