The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 26, 2001
Filed:
Dec. 03, 1992
Andrei Brunfeld, Bat-Yam, IL;
Joseph Shamir, Haifa, IL;
Gregory Toker, Jerusalem, IL;
Liviu Singher, Haifa, IL;
Ilan Laver, Kefar Saba, IL;
Ely Pekel, Kefar Saba, IL;
Brown & Sharpe Surface Inspection Systems, Inc., North Kingstown, RI (US);
Abstract
An optical inspection apparatus operates at high speed at very high resolution for detecting defects in flat, polished media in a production environment. The configuration of the first embodiment is used to inspect transparent disks such as those used as disk platters in hard disk drives. The configuration of the second embodiment is used to inspect reflective disks. The configuration of the third embodiment is used to inspect transparent flat panels such as those commonly used in Liquid Crystal Display (LCD) panels. All embodiments use a laser providing a light beam directed to a polygon scanner, which provides a linear scan of the beam. The unit to be inspected is moved such that its entire surface passes the scan path of the light beam. The light beam, after contacting the unit to be inspected, is directed to a parallel detector array, which detects changes in the nominal Gaussian distribution of the light beam that correspond to defects above a programmable threshold level. This parallel detection method allows the inspection apparatus to identify defects much smaller than the diffraction limits of the optics used, and will accurately identify changes in the light beam caused by defects in the media. An automatic media handler loads untested units into the apparatus and unloads and sorts tested units according to the results of the inspection.