The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 26, 2001
Filed:
Feb. 18, 1999
Andreas Nikolaus Dorsel, Menlo Park, CA (US);
Mel N. Kronick, Palo Alto, CA (US);
Gary B. Gordon, Saratoga, CA (US);
Agilent Technologies, Inc., Palo Alto, CA (US);
Abstract
A method for reading out data from microlocations of a microelectronic array involves activating multiple microlocations in parallel and simultaneously detecting the responses from the activated microlocations to determine concentrations of molecular biological material at each microlocation. In a preferred embodiment, the microelectronic array includes electronically addressable electrodes at each microlocation which can be individually activated via a control system. An electrochemiluminescent detection technique is used to detect the presence and determine the concentration of bound molecular biological material that is located at each microlocation. Electrochemiluminescent material is utilized because it gives off light when excited by an applied electrical field. With an addressable microelectronic array, electrical fields can be applied to various combinations of microlocations simultaneously to allow readout of several microlocations in parallel. This is in contrast to the laser-based readout approach which applies activation energy to one microlocation at a time by impacting each microlocation with a single laser system. Reading out multiple microlocations simultaneously in accordance with the invention can produce significant time savings in large arrays.