The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 19, 2001

Filed:

May. 29, 1998
Applicant:
Inventor:

Lyn Hibbard, St. Louis, MO (US);

Assignee:
Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G06K 9/00 ;
U.S. Cl.
CPC ...
G06K 9/00 ;
Abstract

A system and method is disclosed for automatically computing contours representing the boundaries of objects in three-dimensional tomographic images that may be formed by computed tomography (“CT”), magnetic resonance imaging (“MRI”), positron emission tomography (“PET”), single proton emission computed tomography (“SPECT”), or other appropriate methods. The system and method begin with a sample region of the object's interior and the single region is expanded in a step-wise fashion. At each step, a contour maximally matching the region's current edge, local gray-level gradient maxima, and prior contour shapes is determined. Upon completion of region expansion, the object contour is set to that step-contour having the maximum value of an objective function summing contributions from region edges, gradient edges, and prior shapes. Both the region expansion and the boundary contour determination are formulated such that there is a guaranteed average minimum error in the determination of the contours. This contour is represented as a parametric curve in which the contour size and shape are specified by the values of the parameters. These parameters are independent variables of the objective function. The parameters also are considered to be random variables capable of encoding a distribution of contour shapes, and by assuming a particular distribution, the contribution of shape constraints to the object function can be computed. The resulting contour corresponds to the set of parameters for which the objective function is a maximum.


Find Patent Forward Citations

Loading…