The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 05, 2001
Filed:
Jul. 15, 1997
Patrick C. Fenton, Calgary, CA;
Albert J. Van Dierendonck, Los Altos, CA (US);
NovAtel, Inc., Calgary, CA;
Abstract
GNSS receiver includes a subsystem that reduces the adverse effects of multipath signals on punctual and early-minus-late correlation measurements by making the correlation measurements using a “blanked-PRN code.” The blanked-PRN code is all zeros except for adjacent positive and negative short pulses that occur at every code bit transition in a locally-generated PRN code. Using the blanked-PRN code, the receiver makes non-zero correlation measurements only near the code bit transitions in the local PRN code. If the local PRN code and the PRN code in the received GNSS satellite signal are closely aligned, the non-zero correlation measurements are made at the times of the bit transitions in the received PRN code. The contributions to the correlation measurements of the multipath signals that do not have bit transitions during the adjacent positive and negative pulses in the blanked-PRN code cancel when the correlation measurements are accumulated—since these multipath signals are constant during the pulse times. The GNSS receiver includes blanked-PRN code logic that produces the blanked-PRN code from the locally-generated PRN code. The blanked-PRN code logic thus produces a code that is zero-valued except for the adjacent pulses. Alternatively, the blanked-PRN code logic produces the zero-valued portions of the code by selectively disabling the blanked-code correlators in between the code bit transitions in the local PRN code. The result is the same, namely, a system that produces non-zero correlation measurements near the code bit transitions in the local PRN code.