The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
May. 15, 2001

Filed:

Oct. 14, 1999
Applicant:
Inventors:

Ki Suk Yoo, Taejon, KR;

Sang Gee Kang, Taejon, KR;

Jae Ick Choi, Taejon, KR;

Jong Suk Chae, Taejon, KR;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H03F 1/26 ;
U.S. Cl.
CPC ...
H03F 1/26 ;
Abstract

Provided with an optimal control method for an adaptive feedforward linear amplifier that includes an adaptive controller connected to first and second PLLs (Phase Locked Loops) respectively determining frequency bands for a main signal component and a distortion signal component. The adaptive controller adaptively controls control voltages of a first variable phase shifter and a first variable attenuator constituting a main signal cancellation loop and control voltages of a second variable phase shifter and a second variable attenuator constituting an error signal cancellation loop. The optimal control method includes the steps of: (a) after initialization of necessary parameters, reading a strength of an input signal, determining the initial optimal control voltages of the first and second variable phase shifters and the first and second variable attenuators, outputting the corresponding control voltages, and setting the first PLL to read a main signal strength of the main signal cancellation loop; (b) controlling the optimal control voltages of the first variable phase shifter and the first variable attenuator until the main signal strength becomes lower than a first threshold, if the main signal strength exceeds the first threshold; (c) determining the main signal strength read out from the error signal cancellation loop, if the main signal strength is greater than the first threshold, repeat step (b), otherwise; and (d) controlling the optimal control voltages for the second variable phase shifter and the second variable attenuator until the difference between the main signal strength and the distortion signal strength becomes lower than a second threshold, if the difference is greater than the second threshold.


Find Patent Forward Citations

Loading…