The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
May. 08, 2001

Filed:

Apr. 01, 1999
Applicant:
Inventors:

Stephen J. Brosnan, San Pedro, CA (US);

Donald G. Heflinger, Torrance, CA (US);

Lee O. Heflinger, Torrance, CA (US);

Assignee:

TRW Inc., Redondo Beach, CA (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G01B 9/02 ;
U.S. Cl.
CPC ...
G01B 9/02 ;
Abstract

An optical heterodyne wavefront sensor uses a radio frequency (RF) signal for measuring an optical wavefront having a state of phase that differs throughout its aperture. It comprises a lens, optical fiber and optical frequency shifter arrangement to develop a reference optical wavefront having substantially the same phase throughout and that is shifted in frequency by an amount corresponding to the RF. A beam combiner interferometrically combines the optical wavefront and the shifted reference optical wavefront into a heterodyne optical signal at the RF frequency, each subaperture of which has a phase that corresponds to the state of phase of a like subaperture of the optical wavefront. An array of lenses focuses the optical heterodyne signal into an array of photodetectors, each responsive to a subaperture and that produces an electrical signal at the optical beat frequency corresponding to the RF and having a phase corresponding to the state of phase of the corresponding subaperture of the optical wavefront. A plurality of circuit chains, each including a digital divider, responds to the RF signal and a corresponding one of the array of electrical signals and with an exclusive OR circuit and an integrating circuit develops a like plurality of output signals that comprise voltages that linearly correspond to the state of optical phase of a subaperture of the optical wavefront. The composite output signals represent the optical state of phase of the incoming optical wavefront.


Find Patent Forward Citations

Loading…