The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 10, 2001
Filed:
Nov. 20, 1998
Mehrdad Ziari, Pleasanton, CA (US);
Robert G. Waarts, Fremont, CA (US);
Robert J. Lang, Pleasanton, CA (US);
John DeAndrea, Lawrenceville, NJ (US);
Michael L. Bortz, Columbia, MO (US);
Brian F. Ventrudo, Ottawa, CA;
SDL, Inc., San Jose, CA (US);
Abstract
Apparatus for providing a laser source optically coupled to an optical waveguide, such as an optical fiber, having a reflective grating positioned from the output facet of the laser source a distance equal to or greater than the coherence length of the laser source providing a portion of reflective feedback into the laser source optical cavity to maintain wavelength operation of the laser source in spite of changes in the laser operating temperature or drive current based upon coherence collapse in the laser operation. In cases where the fiber grating is positioned in the fiber within the coherence length of the laser source, intermittent coherence collapse, as opposed to continuous coherence collapse, is unavoidable. In cases where such a laser source is a pumping source for a solid state gain medium, such as an optical amplifier or laser having an active gain element, e.g., an Er doped amplifier, undesirable perturbations in the laser source output are present which have a deleterious effect on the operation of the solid state gain medium. The effect of these undesirable perturbations are substantially removed by a small, continuous variation or dither in the driving current of the laser source having a rate of variation that exceeds the active gain element excited state lifetime thereby controlling the switching of the laser source operation between states of coherency and coherence collapse. As a result, the effects of laser source perturbations are avoided so as not to have an effect on the operation of the coupled solid state gain medium so that its gain stability is improved. Various embodiments of dither circuits are disclosed. In addition, polarization-maintaining behavior is induced in optical waveguides to further improve laser source stability.