The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 06, 2001
Filed:
Jan. 23, 1998
Jeffrey Haskell Derby, Chapel Hill, NC (US);
David Ross Thomas, Apex, NC (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
A communication interface and a design method therefor simultaneously shape a synthesized terminating impedance matching different frequency bands on different connecting communication circuits and a receive path response to prevent frequency roll-off. In some cases, for example based on specified network requirements in a particular country, the terminating impedance presented by the interface must have different frequency characteristics for received signals in different bands of frequencies. A transconductance amplifier and feedback loop provide the terminating impedance for signals received from the communication circuit and serve as a source impedance for signals transmitted by the interface to the telephone line. Signals with different frequencies will generally be received from the telephone line. These different characteristics are realized using different filter networks in the feedback loop. Each network provides a matching terminating impedance to the communication circuit according to the frequency band applied to the circuit. The network shapes the synthesized impedance based upon the relation Z=1/G,H where Z=the terminating impedance; G,is the transconductance of the amplifier and H is the transfer function of the feedback network. For multiple frequencies on the telephone line, multiple networks are included in the feedback loop. Each network is designed to match the impedance requirements of a frequency band without affecting the terminating impedance and frequency band of the other frequency bands. A receive filter circuit is coupled to the feedback loop and in combination with the filter networks in the feedback loop prevent frequency roll-off of received frequencies.