The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Feb. 06, 2001

Filed:

Jan. 02, 1998
Applicant:
Inventors:

Hira V. Thapliyal, Los Altos, CA (US);

Philip E. Eggers, Dublin, OH (US);

Katherine M. Williams, Gilroy, CA (US);

Michael A. Baker, Woodside, CA (US);

Phillip M. Olsen, Sunnyvale, CA (US);

Assignee:

ArthroCare Corporation, Sunnyvale, CA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
A61B 1/814 ;
U.S. Cl.
CPC ...
A61B 1/814 ;
Abstract

The present invention is directed to systems, methods and apparatus for removing implanted objects from a patient's body, particularly implanted endocardial or epicardial pacemaker leads and transvenous defibrillation leads from a patient's heart. In one aspect of the invention, an electrosurgical catheter is advanced to a position within the thoracic cavity adjacent a portion of a pacemaker lead that is affixed to heart tissue. Preferably, the catheter is advanced over the pacemaker lead, i.e., using the pacemaker lead as a guidewire, to facilitate this positioning step. Once the distal end of the catheter reaches a blockage, or a portion of the lead that is attached to fibrous scar tissue, a high frequency voltage difference is applied between one or more electrode terminal(s) at the distal end of the catheter and one or more return electrode(s) to remove the scar tissue around the lead. The catheter is then advanced further along the lead until it reaches another blockage caused by fibrous scar tissue, and the process is continued until the catheter reaches the distal tip of the lead in the myocardium. At this point, the distal tip may be severed from the rest of the lead, or pulled out of the myocardial tissue in a conventional manner. The scar tissue around the pacemaker lead is precisely ablated before removing the lead, which minimizes or eliminates the risks associated with mechanical traction and countertraction, such as disruption of the heart wall, lead breakage with subsequent migration and the like.


Find Patent Forward Citations

Loading…