The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 30, 2001
Filed:
Jul. 23, 1999
Alberto Malinverno, Blauvelt, NY (US);
David J. Rossi, Katy, TX (US);
Metin Karakas, Amstelveen, NL;
Brian Spies, Roseville, AU;
Carlos Torres-Verdin, Buenos Aires, AR;
Ian Bryant, Ridgefield, CT (US);
Min-Yi Chen, West Redding, CT (US);
Schlumberger Technology Corporation, Ridgefield, CT (US);
Abstract
Methods for locating an oil-water interface in a petroleum reservoir include taking resistivity and pressure measurements over time and interpreting the measurements. The apparatus of the invention includes sensors preferably arranged as distributed arrays. According to a first method, resistivity and pressure measurements are acquired simultaneously during a fall-off test. Resistivity measurements are used to estimate the radius of the water flood front around the injector well based on known local characteristics. The flood front radius and fall-off pressure measurements are used to estimate the mobility ratio. According to a second method, resistivity and pressure measurements are acquired at a variety of times. Prior knowledge about reservoir parameters is quantified in a probability density function (pdf). Applying Bayes' Theorem, prior pdfs are combined with measurement results to obtain posterior pdfs which quantify the accuracy of additional information. As new measurements are acquired, posterior pdfs, updated for expected temporal variations, become prior pdfs for the new measurements. According to a third method, uncertainty about the reservoir parameters is represented by Gaussian pdfs. The relationship between measurements and reservoir parameters is locally approximated by a linear function. Uncertainties are quantified by a posterior covariance matrix.