The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 30, 2001
Filed:
Jan. 27, 2000
Hartmut Schmidt, Karlsruhe, DE;
Michael Westphal, Offenbach, DE;
Brucker Analytik GmbH, Rheinstetten, DE;
Abstract
The windings of an NMR magnet coil are formed of at least two adjacent non-crossing conductor paths which are electrically insulated from one another. Each conductor path of a partial coil can be transformed geometrically into one respective conductor path in each partial coil through the symmetrical operations. The various conductor paths in each partial coil are coded in such a manner that the conductor paths adjacent to one another in a winding and attributed with identical successive cardinal numbers as code numbers in their geometric order. The conductor paths in the various partial coils which can be transformed into one another through symmetrical operations have the same code numbers. Each conductor path in a partial coil is electrically connected in series with one conductor path each in at least one other partial coil. These series connections of conductor paths are electrically connected to one another in parallel. The sum of the code numbers of the conductor paths connected in series in the various partial coils is identical in each case with all series connections of conductor paths which are connected in parallel. In this manner it is possible, with an extremely small number of crossings, to avoid the problem of strong current redistributions by eddy currents in the generation of magnetic fields which are rapidly variable with time.