The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 18, 2000
Filed:
Feb. 23, 1999
Donald W Davies, Torrance, CA (US);
Mark Slater, Manhattan Beach, CA (US);
Richard A Hutchin, Calabasas, CA (US);
TRW Inc., Redondo Beach, CA (US);
Abstract
A dual sensor wavefront correction system is adaptable to correcting wavefronts including wavefronts that are severely scintillated. The system includes a Hartmann wavefront sensor as well as a unit shear lateral shearing interferometer (LSI) wavefront sensor. The optical output signals from the Hartmann wavefront sensor are applied to a real reconstructor which provides an estimation of the distortion in the wavefront during most conditions except for conditions of severe turbulence. In order to provide compensation for the phase discontinuities in a scintillated wavefront, a unit shear lateral shearing interferometer (LSI) wavefront sensor is provided. The optical output signals from the unit shear LSI wavefront sensor are processed by a complex reconstructor in order to provide relatively accurate estimates of the tilt signals at the discontinuities. The output of the real reconstructor and the complex reconstructor are combined in a synergistic manner to provide a composite correction signal to the actuators of a deformable mirror. As such, the wavefront correction system has a relatively wide dynamic range and is not blind to discontinuities in the wavefronts as a result of turbulence. A steering mirror may also be provided to optimize the dynamic range of the deformable mirror.