The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Dec. 05, 2000

Filed:

Oct. 14, 1997
Applicant:
Inventors:

Mark A Sturza, Encino, CA (US);

Farzad Ghazvinian, Mercer Island, WA (US);

Sami M Hinedi, Bellevue, WA (US);

Karl R Griep, Seattle, WA (US);

Samson Million, Kirland, WA (US);

Assignee:

Teledesic LLC, Bellevue, WA (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H04B / ; H04B / ; H04L / ;
U.S. Cl.
CPC ...
370389 ; 370316 ; 370441 ;
Abstract

A data communication system for a constellation of low-Earth orbit (LEO) satellites (13a, 13b, . . . ) that employ Earth-fixed cellular beam management technology is disclosed. The data to be communicated is formed into data packets by a transmitting ground terminal (41). Each data packet includes a header (41) and a payload (43). The header (41) contains address and other control information and the payload (43) contains the data to be communicated. The header and payload databits are separated (71) and outer forward error correction (FEC) encoded (72, 73) with an outer error correction code. The symbols of the outer encoded header and payload codewords are interleaved, first separately (74, 75) and then together (76). The outer encoded, interleaved header and payload codewords are inner encoded by an inner FEC encoder (77). Upon receipt by an uplink satellite (63), the inner error correction code is removed (87) and the resulting codeword symbols are de-interleaved (88, 89, 90). The outer error correction code of the header portion is then removed (91) to recover the header of the original signal. The information contained in the header is used to route the data packets through the satellite constellation to the appropriate downlink satellite (93). The downlink satellite re-outer encodes the header (95) and the symbols of the re-outer encoded header and the still outer encoded payload codewords are separately interleaved (96, 97) and then interleaved together (98). The interleaved re-outer encoded header and outer encoded payload databits are re-inner encoded (99). Upon receipt by a receiving ground terminal (107), the data packets are inner decoded (111) to remove the inner error correction code and the symbols of the header and payload codewords are de-interleaved (112, 113, 114). Then the header and payload codewords are outer decoded (115, 116) to remove the outer error correction codes and recover the header and payload. Preferably a payload filter (117) is included to eliminate the need to outer decode payload codewords not destined for the receiving ground terminal (107).


Find Patent Forward Citations

Loading…