The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 21, 2000
Filed:
Jun. 02, 1997
Gerald Richard Ash, West Long Branch, NJ (US);
Jiayu Chen, Middletown, NJ (US);
Saul Daniel Fishman, Edison, NJ (US);
AT&T Corp, New York, NY (US);
Abstract
The routing of calls in a telecommunications switching system (12.sub.1, 12.sub.2) comprised of one or more fabrics (22.sub.1, 22.sub.2, 22.sub.3) controlled by corresponding fabric controllers (26.sub.1,26.sub.2 and 26.sub.3, respectively) is carried out by a routing processor (28) independent of the fabrics. The routing processor actually selects the route for each call by specifying a channel to a neighboring switching system to carry the call. Further, the routing processor has the capability to respond to queries from other switching systems regarding trunk group status and traffic load to enable the processor to assist the routing processor of the other switching system to make routing decisions. By implementing fabric independent routing, routing processing is re-used for new fabric capacity, and is readily extended to accommodate new service types, such as bursty data services. Fabric independent routing achieves lower development cost by avoiding re-development of routing functions on new fabric controllers, as they are added, and the addition of new routing features is made on a single routing processor function versus multiple fabric controllers. Fabric independent routing allows routing processing to be implemented on processors with essentially unlimited real-time and memory resources by riding the processor technology curve, and achieves performance advantages such as reduced call set up delay and improved overall switch reliability.