The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Nov. 14, 2000

Filed:

Jan. 19, 1999
Applicant:
Inventors:

D Allen Annis, Cambridge, MA (US);

Mark Birnbaum, New York, NY (US);

Seth N Birnbaum, Boston, MA (US);

Andrew N Tyler, Reading, MA (US);

Assignee:

Neogenesis, Inc, Cambridge, MA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H01J / ;
U.S. Cl.
CPC ...
250281 ; 250282 ;
Abstract

A technique for automatically analyzing mass spectrographic data from mixtures of chemical compounds is described consisting a series of screens designed to eliminate or reduce incorrect peak identifications due to background noise, system resolution, system contamination, multiply charged ions and isotope substitutions. The technique performs a mass spectrum operation on a control sample, producing a first group of output values. Next, perform a mass spectrographic operation on a sample to be analyzed, producing a second group of output values. Select a first m/z ratio for a material expected to be present in the mixture from a predetermined library of calculated mass spectrometer output spectrums and subtract the value of the control sample at the expected output value from the value of the analyzed sample, and compare the difference to a predetermined value. If the value is greater than the predetermined value thus indicating that the signal is above the background noise level, generating a record at that m/z value for an expected material. Performing the same mass spectrum operation several times to eliminate random noise and background contamination. Next, identify peak values that don't have the expected peak width or proper retention time for the separation method. Identify multiply charged ions by examining peak separation. Examine the m/z location of the expected material and compare intensity at the expected m/z location with the intensity at the next lower m/z recorded peak to identify peaks related to atomic isotope substitution. With such a technique, mass spectrograph data analysis may be greatly simplified by the identification of probable spurious signals, and analysis will become simpler and more accurate.


Find Patent Forward Citations

Loading…