The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 14, 2000
Filed:
Dec. 02, 1998
Tibor Juhasz, Irvine, CA (US);
Zachary S Sacks, Ann Arbor, MI (US);
Ronald M Kurtz, Ann Arbor, MI (US);
Gerard A Mourou, Ann Arbor, MI (US);
The University of Michigan, Ann Arbor, MI (US);
Abstract
An ab interno method for transscleral photodisruption of tissue on the interior surface of the sclera includes selecting a wavelength for a laser beam. The selected wavelength may be either from a first range of wavelengths (0.4-1.4 .mu.m) which is normally strongly scattered as it is transmitted through the sclera, or from a second range of longer wavelengths (1.5-2.5 .mu.m) which is less scattered as it is transmitted through the sclera. If the first range of wavelengths is selected, a chemical agent may be applied to the sclera to make it effectively transparent, but this may not be necessary. In either case, the laser beam is focused directly through the sclera to a focal point on the interior surface of the sclera. Once focused, the laser beam is activated to photodisrupt scleral tissue at the focal point. The laser beam is then moved in a pattern and refocused at successive focal points to photodisrupt scleral tissue at each of the focal points. This continues until the desired volume of scleral tissue has be photodisrupted, and thereby removed, from the interior surface of the sclera. The use of ultrashort laser pulses (in the femtosecond or picosecond range) is advantageous in order to achieve high precision and avoid collateral tissue damage. Such collateral damage is known to cause unwanted healing effects which are known to result in surgical failure.