The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 19, 2000
Filed:
Aug. 03, 1998
Jason A Sholder, Beverly Hills, CA (US);
Paul A Levine, Newhall, CA (US);
Joseph J Florio, Sunland, CA (US);
Gene A Bornzin, Simi Valley, CA (US);
Pacesetter, Inc., Sylmar, CA (US);
Abstract
A special type of AV/PV hysteresis is provided in a dual-chamber pacemaker. A long AV delay is initially provided, thereby affording as much opportunity as possible for natural AV conduction to occur. Such long AV delay is automatically shortened should AV block occur. Periodic scanning for the return of AV conduction (absence of AV block) is performed so that the AV delay can be returned to its long value as soon as possible. In one embodiment, the pacemaker 'learns' the natural conduction time (AR interval) of the patient and thereafter uses such learned natural conduction time as a reference against which subsequently measured AR intervals are compared to better distinguish conducted ventricular contractions from ectopic, pathologic, or other nonconducted ventricular contractions (e.g., PVC's). If the measured AR interval is approximately the same as the 'learned' AR interval, then the R-wave at the conclusion of the measured AR interval is presumed to be a conducted R-wave that signals the return of AV conduction, and the AV delay is lengthened back to its original value. If, on the other hand, the measured AR interval is significantly different than the 'learned' natural conduction time, then the R-wave at the conclusion of the measured AR interval is presumed to be a nonconducted R-wave, and the AV delay is kept short. In other embodiments, other techniques are used to distinguish a conducted R-wave from a nonconducted R-wave.