The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Aug. 29, 2000

Filed:

Nov. 26, 1997
Applicant:
Inventor:

Daniel L Goodman, Lexington, MA (US);

Assignee:

Science Research Laboratory, Somerville, MA (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
B32B / ; B29C / ;
U.S. Cl.
CPC ...
1562722 ; 1562755 ; 1562757 ; 1563796 ; 21912129 ; 2191213 ; 2504923 ; 250397 ; 250400 ;
Abstract

Provided is the ability to selectively irradiate a designated irradiation target portion of a target material with a beam of electrons. Target material is moved at a substantially constant velocity in one direction along a path that is intersected by an electron beam. The electron beam is translated in a direction transverse to the direction of the target material movement to intersect the designated portion of the target. This enables the designated target portion, e.g., a target irradiation path, to be followed by the electron beam as the target material moves past the beam. Also provided is control of electron beam dose delivered to the designated irradiation target portion. Here, as a target material is moved along the path, the electron beam is also scanned in a direction parallel with the direction of target material movement to control the electron beam dwell time at points along the designated irradiation target portion, to deliver a specified electron beam dose to points along the designated portion of the target material. This scanning can control the electron beam dwell time to deliver a substantially uniform electron beam dose or to deliver an electron beam dose that falls within a specified range of allowable electron beam doses. Also provided is the ability to control the electron beam in response to feedback signals. Here the actual position of the electron beam intersection with the target is detected, and the electron beam translation is adjusted in response to the detected intersection position to maintain intersection of the electron beam with the designated portion of the target material. Additionally, the electron beam scanning can be adjusted in response to the detected intersection position to maintain delivery of the specified electron beam dose to the designated target portion. Preferably, sensors are positioned in a spaced relationship with the designated target portion, e.g., on the target material, in a configuration that defines the designated portion as a path between the sensors.


Find Patent Forward Citations

Loading…