The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 22, 2000
Filed:
Dec. 20, 1997
Alex Herman, County of Norfolk, MA (US);
Noam Livneh, Yuvalim, IL;
Electronic Retailing Systems, Inc., Norwalk, CT (US);
Abstract
A two-way low-power communication system for an electronic shelf label system uses a multiplicity of labels, each of which has an antenna and a diode. Data to be received at the label is Manchester encoded and 100% AM modulated onto a spread-spectrum RF signal, emitted from a broadcast antenna in the store ceiling. Preferably the RF is around 2.4 Ghz, and the spreading is via direct sequence phase shift keying with a chipping rate at least ten times the RF frequency. A 63-bit sequence may be used. The label detects the RF energy, and a simple comparator followed by a manchester decoder extrats the digital data stream. Data to be set from the label is communicated via a selective modulation of the diode with an offset signal, preferably in the range of 1 to 10.7 Mhz. During this time the ceiling broadcast antenna is emitting a spread-spectrum signal that is not data-modulated in any way. Energy re-emitted by the label antenna is picked up by a ceiling-mounted receiving antenna, and the energy is diverted to two sidebands during times when the diode is being modulated. The received signal is spread-spectrum demodulated and band-pass filtered so that only sideband energy is processed. The label's outbound data stream is recovered by digital signal processing techniques from the sideband energy. The result is a minimization of cost and complexity in the label and an optimal exploitation of the bandwidth given the regulatory framework thereof.