The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Aug. 08, 2000

Filed:

Aug. 31, 1999
Applicant:
Inventors:

Catharina H Emons, Nijmegen, NL;

Doede Terpstra, Eindhoven, NL;

Cornelis E Timmering, Eindhoven, NL;

Wiebe B De Boer, Eindhoven, NL;

Assignee:

U.S. Philips Corporation, New York, NY (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01L / ; H01L / ;
U.S. Cl.
CPC ...
438350 ; 438309 ; 438357 ; 438365 ; 257565 ; 257592 ;
Abstract

The invention relates to a method of manufacturing a discrete or integrated bipolar transistor comprising a base (1A), an emitter (2) and a collector (3). The base (1A) and a connecting region (1B) of the base (1A) are formed by providing a semiconductor body (10) with a doped semiconducting layer (1) which locally borders on a monocrystalline part (3) of the semiconductor body which forms the collector (3). Outside said base, the layer (1) borders on a non-monocrystalline part (4) of the semiconductor body (10) and forms a non-monocrystalline connecting region (1B) of the base (1A). By means of a mask (5), the doping concentration of the layer (1) outside the mask (5) is selectively increased, resulting in a highly conducting connection region (1B) and a very fast transistor. In the known method, an ion implantation is used for this purpose. In a method in accordance with the invention, this is achieved by bringing the semiconductor body (10) into contact with a gaseous substance (40) comprising a doping element, and heating the semiconductor body (10) in such a manner that the doping elements penetrate into the semiconducting layer (1). Such a method surprisingly results in a much faster transistor. It has been found that this enables, on the one hand, a much smaller diffusion in the thickness direction of the doping of the base (1A) to be achieved, which results in a much faster transistor, particularly, if the base (1A) contains SiGe. On the other hand, the lateral diffusion from the connecting region (1B) to the base (1A) is particularly strongly suppressed. This too has a beneficial effect on the speed of the transistor. The supply of the gaseous substance (40), for example diborane, preferably takes place at a temperature between 800 and 950.degree. C. for one to several minutes. Subsequently, a slightly longer diffusion step can be carried out, for example, at 850.degree. C.


Find Patent Forward Citations

Loading…