The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jul. 11, 2000

Filed:

Nov. 24, 1998
Applicant:
Inventors:

Michael A Komara, Indialantic, FL (US);

Thomas R Schmutz, Indialantic, FL (US);

Jeffrey W Smith, Palm Bay, FL (US);

Stephen J Foley, Santa Clara, CA (US);

Assignee:

Airnet Communications Corporation, Melbourne, FL (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H04B / ;
U.S. Cl.
CPC ...
455 111 ; 455422 ; 455101 ; 455134 ; 4552771 ; 370321 ; 370347 ;
Abstract

In a conventional Time Division Multiple Access (TDMA) wireless system, the specified distance between a mobile unit and the base transceiver system (BTS) cannot exceed predetermined distances because of time slot synchronization constraints. Furthermore, varying distances between mobile units and the BTS, as well as Rayleigh fading, caused by destructive interference effects between direct and reflected signals, create extreme signal strength variations in the initial uplink signal from the mobile stations. The use of spatially-diverse antennas for receiving uplink signals provides diversity gain and mitigates deep fades. Furthermore, selecting the stronger of the spatially-diverse uplink signals mitigates deep fades and reduces frequency usage in the backhaul frequency band. In this approach to extending TDMA system coverage, in-band translator components are located in the center of remote cells which would normally contain a base transceiver system (BTS). The in-band translators include delay elements to implement slot-by-slot selective spatial diversity and automatic level control in a predictive feedforward fashion. The selective diversity mitigates deep Rayleigh fades, while the dynamic automatic level control drastically reduces the uplink backhaul dynamic range to allow for greater backhaul distances. Predictive feedforward automatic level control also eliminates overload and saturation of the backhaul high power amplifier, normally caused by wide variations in uplink power levels.


Find Patent Forward Citations

Loading…