The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 27, 2000
Filed:
Nov. 14, 1997
Atsushi Tomozawa, Osaka, JP;
Eiji Fujii, Hirakata, JP;
Hideo Torii, Higashiosaka, JP;
Ryoichi Takayama, Suita, JP;
Matsushita Electric Industrial Co., Ltd., Osaka-fu, JP;
Abstract
The present invention provides a temperature sensor element having excellent heat resistance, quick heat response, stable resistance, and high reliability with a less variation in resistance against time. The temperature sensor element includes a thermo-sensitive film mainly composed of a heat sensitive material having electrical resistance varies depending on the temperature; a pair of electrode films arranged to measure the electrical resistance in the direction of the thickness of the thermo-sensitive film, a base plate mainly composed of a heat-resistant insulating material for supporting the thermo-sensitive film and the electrode films, an anti-diffusion film interposed between the thermo-sensitive film and the electrode film in the vicinity of the base plate, and a film mainly composed of a heat-resistant insulating material for covering the thermo-sensitive film and the electrode films except the lead-connecting terminals of the electrode films. The thermo-sensitive film is composed of an oxide of corundum crystalline structure represented by the formula of (Al.sub.1-x-y Cr.sub.x Fe.sub.y).sub.2 O.sub.3, where 0.05.ltoreq.x+y.ltoreq.0.95, and 0.ltoreq.y/(x+y).ltoreq.0.6, and the anti-diffusion film is composed of an oxide of corundum crystalline structure represented by the formula of (Al.sub.1-x-y Cr.sub.x Fe.sub.y).sub.2 O.sub.3, where 0.ltoreq.x+y.ltoreq.0.95.