The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 20, 2000
Filed:
Nov. 13, 1997
National Science Council, Taipei, TW;
Abstract
A method of manufacturing single-crystal silicon carbide/single-crystal silicon heterojunctions with negative differential resistance, by which one or more single-crystal silicon carbide/single-crystal silicon layer(s) with different types of dopants is/are formed on a silicon substrate, thereby forming new-type multiple negative differential resistance based on (a) single-crystal silicon carbide/single-crystal silicon heterojunction(s). The heterojunction(s) structure from top to bottom can be (1) Al/P--SiC/GCL/N--Si/Al; (2) Al/P--Si/GCL/P--SiC/GCL/N--Si/Al; and (3) Al/P--SiC/GCL/N--Si/GCL/P--SiC/GCL/N--Si/Al, wherein the GCL (Graded Reactant-gas Composition Ratio Layer) is a buffer layer formed between single-crystal silicon carbide layer and single-crystal silicon layer by gradually changing the composition of reaction gases. The structure and process of devices with negative differential resistance according to the invention are simpler than those of the prior art using Group III-V semiconductors. Furthermore, since a cheaper silicon substrate, and silicon carbide that can withstand high temperatures and radiation are used in this invention, manufacturing costs are greatly reduced.