The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 13, 2000
Filed:
May. 19, 1998
John Ohlson, Mt. View, CA (US);
Francis D Natali, Pt. Townsend, VA (US);
Stanford Telecommunications, Inc., Sunnyvale, CA (US);
Abstract
A spread spectrum CDMA communication system in which base stations communicate with a plurality of subscriber terminals located in different beams of a multi-beam satellite relay system. A base station transmits a signal for each beam which is comprised of a set of orthogonally spaced subcarriers, each of which is modulated by a set of orthogonal functions which are overlaid with a pseudo-noise (PN) sequence forming a coded spreading sequence for an information signal. Each orthogonal function carries data for a single user in the beam. Selected carrier signals are modulated with information signals onto the subcarriers to form a beam signal. The available frequency spectrum is divided into non-overlapping segments which are assigned to different beams in a 1:N.sub.ru frequency reuse pattern. Each subscriber terminal has a receiver which coherently demodulate the base station signal. A PN spreading code, P2, with chipping rate N.sub.ru .chi.R.sub.c is applied to all of the beam signals simultaneously to spread the signal energy over a wider bandwidth to reduce the power spectral density in each beam. The receiver correlates the received signal with a synchronized replica of P2 to remove P2 from the incoming signal without affecting beam-to-beam frequency isolation. The subcarriers of the beam signal are orthogonally spaced across the available frequency spectrum with spacing N.sub.ru .chi.R.sub.c and N.sub.ru distinct sets of subcarriers frequencies are formed to be assigned in the 1:N.sub.ru beam frequency reuse pattern.