The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 13, 2000

Filed:

Nov. 13, 1998
Applicant:
Inventors:

Luna H Chiu, Abingdon, MD (US);

Louise C Sengupta, Warwick, MD (US);

Steven Stowell, Havre de Grace, MD (US);

Somnath Sengupta, Warwick, MD (US);

Jennifer Synowczynski, Joppa, MD (US);

Attorneys:
Primary Examiner:
Int. Cl.
CPC ...
C04B / ; C04B / ;
U.S. Cl.
CPC ...
501139 ;
Abstract

Ceramic ferroelectric composite materials comprising barium strontium titte/magnesium and oxygen-containing compound composite further doped with rare earth (lanthanide) oxides. More particularly, these inventive composites are comprised of Ba.sub.1-x Sr.sub.x TiO.sub.3 /Mg--O based compound/rare earth oxide composite, wherein x is greater than or equal to 0.0 but less than or equal to 1.0, and wherein the weight ratio of BSTO to Mg compound may range from 99.75-20 wt. % BSTO to 0.25-80 wt. % Mg compound, and wherein said rare earth oxide additive comprises less than about 10 mole percent of the composite. The rare earth oxides of the composite include all oxides of the lanthanide series elements including scandium and yttrium, as well as combinations thereof. The magnesium-based compound may be selected from the group consisting of MgO, MgZrO.sub.3, MgZrSrTiO.sub.3, MgTiO.sub.3, and MgCO.sub.3. This new class of composite materials has enhanced electronic properties including: low dielectric constants; substantially decreased electronic loss (low loss tangents); increased tunability; increased temperature stability; decreased sintering temperatures; and low curie temperatures. The electronic properties of these new materials can be tailored for various applications including phased array antenna systems, capacitors, transmission wire, wireless communication, and pyroelectric guidance devices.


Find Patent Forward Citations

Loading…