The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 02, 2000
Filed:
Jan. 09, 1997
Lalit Rai Bahl, Amawalk, NY (US);
Peter Vincent deSouza, San Jose, CA (US);
David Nahamoo, White Plains, NY (US);
Mukund Padmanabhan, Ossining, NY (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
A system and method are provided which partition the feature space of a classifier by using hyperplanes to construct a binary decision tree or hierarchical data structure for obtaining the class probabilities for a particular feature vector. One objective in the construction of the decision tree is to minimize the average entropy of the empirical class distributions at each successive node or subset, such that the average entropy of the class distributions at the terminal nodes is minimized. First, a linear discriminant vector is computed that maximally separates the classes at any particular node. A threshold is then chosen that can be applied on the value of the projection onto the hyperplane such that all feature vectors that have a projection onto the hyperplane that is less than the threshold are assigned to a child node (say, left child node) and the feature vectors that have a projection greater than or equal to the threshold are assigned to a right child node. The above two steps are then repeated for each child node until the data at a node falls below a predetermined threshold and the node is classified as a terminal node (leaf of the decision tree). After all non-terminal nodes have been processed, the final step is to store a class distribution associated with each terminal node. The class probabilities for a particular feature vector can then be obtained by traversing the decision tree in a top-down fashion until a terminal node is identified which corresponds to the particular feature vector. The information provided by the decision tree is that, in computing the class probabilities for the particular feature vector, only the small number of classes associated with that particular terminal node need be considered. Alternatively, the required class probabilities can be obtained simply by taking the stored distribution of the terminal node associated with the particular feature vector.