The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 02, 2000
Filed:
Feb. 27, 1998
Masashi Kawasaki, Yokohama, JP;
Hideomi Koinuma, Tokyo, JP;
Akira Ohtomo, Yamato, JP;
Yusaburo Segawa, Tokyo, JP;
Takashi Yasuda, Sendai, JP;
Abstract
A ZnO thin film is fabricated on the c-surface of a sapphire substrate through use of a laser molecular beam epitaxy (MBE) method-which is effective for epitaxial growth of an oxide thin film through control at an atomic level. The thus-formed ZnO thin film has a considerably high crystallinity; the half width of an X-ray rocking curve was 0.06.degree.. The thin film is of an n-type and has a carrier density of 4.times.10.sup.17 /cm.sup.3. The thin film fabricated in a state in which oxygen partial pressure is held constant at 10.sup.-6 Torr has a structure in which hexagon-shaped nanocrystals of uniform size are close-packed, reflecting the crystal behavior of a wurtzite type. Since in each nanocrystal there is observed a spiral structure formed by steps of a unit cell height (0.5 nm), the nanocrystals are considered to grow in a thermodynamically equilibrated state. The lateral size of the nanocrystal can be controlled within the range of approximately 50 to 250 nm. A II-oxide optical semiconductor element utilizes a zinc oxide thin film containing magnesium or cadmium in a solid-solution state. Through addition of magnesium or cadmium, the band gap of zinc oxide can be controlled within the range of 3 to 4 eV.