The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 18, 2000
Filed:
Jul. 22, 1996
Scott W Gordon-Wylie, Pittsburgh, PA (US);
Terrence J Collins, Pittsburgh, PA (US);
Carnegie Mellon University, Pittsburgh, PA (US);
Abstract
New synthetic methods for the preparation of macrocyclic amido-N donor ligands are provided. The primary method of the present invention involves in general only two synthetic steps. In the first step, an .alpha. or .beta. amino carboxylic acid is allowed to react with an optimal (approximately stoichiometric) amount of an activated malonate or oxalate derivative with mild heating. Upon completion of the double coupling reaction, hydrolysis of the reaction mixture yields a diamide containing intermediate (a macro linker). In the second step, stoichiometric amounts of a diamine, preferably an orthophenylene diamine, are added to the macro linker intermediate in the presence of a coupling agent and heat. This second double coupling reaction, is allowed to proceed for a period of time sufficient to produce a macrocyclic tetraamido compound. The substituent groups on the .alpha. or .beta. amino carboxylic acid, the malonate, and the aryl diamine may all be selectively varied so that the resulting tetraamido macrocycle can be tailored to specific desired end uses. The macrocyclic tetraamide ligand may then be complexed with a metal, such as a transition metal, and preferably the middle and later transition metals, to form a robust chelate complex suitable for catalyzing oxidation reactions.