The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Apr. 11, 2000

Filed:

May. 14, 1997
Applicant:
Inventors:

Michael J Heller, Encinitas, CA (US);

Eugene Tu, San Diego, CA (US);

Ronald G Sosnowski, Coronado, CA (US);

James P O'Connell, Del Mar, CA (US);

Assignee:

Nanogen, Inc., San Diego, CA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
C12Q / ;
U.S. Cl.
CPC ...
435-6 ; 436501 ; 422 50 ; 422 681 ; 422 69 ; 422 8205 ; 422 8206 ; 422 8207 ; 422 8208 ; 422129 ;
Abstract

Methods for electronic perturbation of fluorescence, chemilluminescence and other emissive materials provide for molecular biological analysis. In a preferred method for hybridization analysis of a sample, an electronic stringency control device is used to perform the steps of: providing the sample, a first probe with a fluorescent label and a second probe with a label under hybridization conditions on the electronic stringency control device, forming a hybridization product, subjecting the hybridization product to an electric field force, monitoring the fluorescence from the hybridization product, and analyzing the fluorescent signal. The label preferably serves as a quencher for the fluorescent label. In yet another aspect of this invention, a method for achieving electronic fluorescence perturbation on an electronic stringency control device comprising the steps of: locating a first polynucleotide and a second polynucleotide adjacent the electronic stringency control device, the first polynucleotide and second polynucleotide being complementary over at least a portion of their lengths and forming a hybridization product, the hybridization product having an associated environmental sensitive emission label, subjecting the hybridization product and label to a varying electrophoretic force, monitoring the emission from the label, and analyzing the monitored emission to determine the electronic fluorescence perturbation effect. In yet another aspect of this invention, a method is provided for electronic perturbation catalysis of substrate molecules on an electronic control device containing at least one microlocation comprising the steps of: immobilizing on the microlocation an arrangement of one or more reactive groups, exposing the reactive groups to a solution containing the substrate molecules of interest, and applying an electronic pulsing sequence which causes charge separation between the reactive groups to produce a catalytic reaction on the substrate molecules.


Find Patent Forward Citations

Loading…