The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Mar. 21, 2000

Filed:

Mar. 05, 1998
Applicant:
Inventors:

Joseph L Sullivan, Kirkland, WA (US);

Lawrence A Borschowa, Kirkland, WA (US);

Richard C Nova, Kirkland, WA (US);

Assignee:
Attorney:
Primary Examiner:
Int. Cl.
CPC ...
A61N / ;
U.S. Cl.
CPC ...
607-5 ;
Abstract

An external defibrillator (8) with an output circuit (14) having four legs arrayed in the form of an 'H' (an 'H-bridge') is disclosed. Each leg of the output circuit contains a solid-state switch (31, 32, 33, 34). By selectively switching on pairs of switches in the H-bridge, a biphasic defibrillation pulse may be applied to a patient. The switches in three of the legs of the H-bridge output circuit are preferably silicon controlled rectifiers (SCRs). Gate drive circuits (51, 53, 54) are coupled to the SCRs to bias the SCRs with a voltage that allows the SCRs to remain turned-on even when conducting low current. The switch in the fourth leg is preferably a pair of insulated gate bipolar transistors (IGBTs) coupled in series. A gate drive circuit (52) is coupled to the gate of the IGBTs to provide a slow turn-on and a fast turn-off of the IGBTs. The gate drive circuit (52) also biases the IGBTs with a sufficient voltage to allow the IGBTs to withstand a shorted discharge of the external defibrillator through the output circuit. The circuit also includes a protective component (27) that has both inductive and resistive properties. The protective component (27) serves to both limit current during a defibrillation pulse, and to absorb energy during an internal energy dump. An internal energy dump is performed by biasing on the switches in two legs on the same side of the H-bridge output circuit (14), eliminating the need for a separate energy dump circuit.


Find Patent Forward Citations

Loading…