The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 07, 2000
Filed:
Jun. 12, 1997
Sergey Liberman, Bedford, MA (US);
Peter L Domenicali, Montpelier, VT (US);
Alan H Field, Topsfield, MA (US);
Charles M Kohn, Needham, MA (US);
Glendon P Marston, Manchester, MA (US);
Semitest Inc., Billerica, MA (US);
Abstract
A method for determining the doping concentration profile of a specimen of semiconductor material. The specimen is positioned between a pair of electrodes, the specimen being disposed on one of the electrodes and being spaced from the other electrode by an air gap. A signal is provided corresponding to the total capacitance between the two electrodes. A region of the surface of the specimen is illuminated with a beam of light of wavelengths shorter than that corresponding to the energy gap of the semiconductor material and which is intensity modulated at a predetermined frequency. A variable DC bias voltage is applied between the pair of electrodes, the variable bias voltage varying between that corresponding to accumulation and that corresponding to deep depletion for the specimen. The intensity of the light beam is low enough and the speed at which the DC bias voltage is varied is fast enough such that no inversion layer is formed at the surface of the specimen. A signal is provided representing the ac photocurrent induced at the region of the specimen illuminated by the light beam. The intensity of the light beam and frequency of modulation of the light beam are selected such that the ac photocurrent is nearly proportional to the intensity of the light beam. The doping concentration profile is then determined using the ac photocurrent, the total capacitance and the DC bias voltage.