The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Mar. 07, 2000

Filed:

Oct. 22, 1997
Applicant:
Inventors:

Bruce Gnade, Dallas, TX (US);

Scott Summerfelt, Garland, TX (US);

Peter Kirlin, Newtown, CT (US);

Assignee:
Attorneys:
Primary Examiner:
Int. Cl.
CPC ...
H01L / ; H01G / ;
U.S. Cl.
CPC ...
438-3 ; 438254 ;
Abstract

A capacitive structure on an integrated circuit and a method of making the same are disclosed, which is particularly useful in random-access memory devices. Generally, the method of the present invention comprises the steps of forming a substantially vertical temporary support 54 (preferably by forming a cylindrical aperture in an insulating layer) on a semiconductor substrate 10 and forming a substantially vertical dielectric film 32 (preferably a high dielectric constant perovskite-phase dielectric film, and more preferably barium strontium titanate) on temporary support 54. The method further comprises depositing a first conductive (e.g. platinum) electrode 60 on substantially vertical dielectric film 32, and subsequently replacing temporary support 54 with a second conductive (e.g. platinum) electrode 64, such that a thin film capacitor 44 which is substantially vertical with respect to substrate 10 is formed. The entire capacitor is essentially self-aligned, such that some embodiments require only one lithography step to complete the capacitor. Also, an advantage of this method is that a high temperature, high oxygen activity dielectric deposition may be completed prior to formation of either electrode, thus greatly simplifying both electrode structure and processing.


Find Patent Forward Citations

Loading…