The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 29, 2000
Filed:
Jan. 13, 1998
Douglas T Grider, McKinney, TX (US);
Stanton P Ashburn, Dallas, TX (US);
Katherine E Violette, Dallas, TX (US);
F Scott Johnson, Dallas, TX (US);
Texas Instruments Incorporated, Dallas, TX (US);
Abstract
An embodiment of the instant invention is a method of fabricating a semiconductor device which includes a dielectric layer situated between a conductive structure and a semiconductor substrate, the method comprising the steps of: forming the dielectric layer (layer 14) on the semiconductor substrate (substrate 12); forming the conductive structure (structure 18) on the dielectric layer; doping the conductive structure with boron; and doping the conductive structure with a dopant which inhibits the diffusion of boron. The semiconductor device may be a PMOS transistor or a capacitor. Preferably, the conductive structure is a gate structure. The dielectric layer is, preferably, comprised of a material selected from the group consisting of: an oxide, an oxide/oxide stack, an oxide/nitride stack, and an oxynitride. Preferably, the dopant which inhibits the diffusion of boron comprises at least one group III or group IV element. More specifically, it is preferably comprised of: carbon, germanium, and any combination thereof. Preferably, the steps of doping the conductive structure with boron and doping the conductive structure with a dopant which inhibits the diffusion of boron are accomplished substantially simultaneously, or the step of doping the conductive structure with boron is preformed prior to the step of doping the conductive structure with a dopant which inhibits the diffusion of boron are accomplished substantially simultaneously.