The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Feb. 08, 2000

Filed:

Aug. 03, 1998
Applicant:
Inventors:

Kirk B Ashby, Reading, PA (US);

Paul C Davis, Reading, PA (US);

Michael D Womac, Blandon, PA (US);

Assignee:

Lucent Technologies Inc., Murray Hill, NJ (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H03F / ; H03F / ;
U.S. Cl.
CPC ...
330290 ; 330259 ;
Abstract

In low-voltage circuits, there is often insufficient voltage to use a current source to bias a transconductance amplifier stage. This is particularly true in mixers where a switching circuit must be stacked on top of the transconductance input stage. One way around this problem is to get 'double-duty' out of the input differential pair, using it both for gain stage and for DC bias. This is done by AC coupling in a high-frequency input signal, while using a low-frequency, DC-coupled circuit to establish the proper bias level. One common technique is to use a simple current mirror scheme to establish the DC level. Proper biasing using this technique requires good matching of resistance. In some implementations of transconductance amplifiers, particularly those that use inductors as degeneration elements, series resistance of the inductor and interconnect resistance can cause significant errors in the bias current. This invention addresses that problem by using an operational amplifier with a current-sensing resistor and a low-frequency feedback loop to compensate automatically for any resistance errors. The operational amplifier drives the feedback voltage (generated in accordance with the sensed voltage at the current-sensing resistor and applied to one input of the operational amplifier) towards a reference voltage that is applied to the other input of the operational amplifier to bias the transistor(s) in the transconductance amplifier for desired operating conditions.


Find Patent Forward Citations

Loading…